Российские ученые идут к созданию квантовых компьютеров По оценке известного американского физика Джона Арчибальда Уилера (John Archibald Wheeler, 1911- 2008), примерно одна треть ВВП США непосредственно основана на достижениях квантовой механики. Это и не удивительно, если учесть, что на этой науке построена практически вся электроника, нанотехнологии, лазерные технологии, атомная промышленность, новые химические материалы и препараты и т.п. Успешное развитие указанных отраслей невозможно без проведения подробных расчетов квантовых систем, таких как наноструктуры, сложные химические и биологические молекулы, новые лекарства и т.п. Однако, несмотря на впечатляющие успехи в изучении фундаментальных законов природы, полномасштабное моделирование сложноорганизованных квантовых систем все еще остается практически неосуществимой задачей. Исторический анализ показывает, что информационные технологии (ИТ) растут экспоненциально быстро. В целом, развитие ИТ следует так называемому закону Мура, который основан на эмпирических наблюдениях, сделанных сотрудником Intel Гордоном Муром (Gordon Earle Moore) еще на заре интегральной микроэлектроники в 1965 году. Проанализировав развитие микроэлектроники в течение нескольких первых лет с момента ее рождения, Мур представил прогноз, согласно которому число транзисторов в микросхеме будет удваиваться примерно каждые 2 года. Тенденции, описываемые законом Мура, смогут продолжаться и после 2020 года, если на смену имеющимся технологиям придут новые технологии, такие как оптические, молекулярные и квантовые компьютеры. Квантовые задачи, за исключением простейших, являются алгоритмически очень сложными (практически неосуществимыми) для вычислений на классическом компьютере. Проиллюстрируем сказанное примером. Для полномасштабного моделирования квантовых свойств атома железа нужно рассматривать движение всех его 26 электронов в трёхмерном пространстве, что приводит к необходимости решать уравнение Шредингера в конфигурационном пространстве размерности 26 · 3 = 78 (и это без учёта спинов электронов, которые делают динамику ещё более сложной). Если взять весьма грубую сетку, которая делит каждую координату всего на 10 частей, то понадобится 1078 узлов для реализации соответствующей разностной схемы. Такого рода моделирование, однако, никогда не сможет быть осуществлено, хотя бы потому, что полное число элементарных частиц во Вселенной, таких как протоны и нейтроны, также «всего» порядка 1078. Таким образом, для моделирования всего одного и далеко не самого сложного атома требуется ресурс, который превышает механический ресурс всей Вселенной. Из этих, давно известных и, на первый взгляд, негативных наблюдений Р.Ф.Фейнман (Richard Phillips Feynman) в 1982 г. сумел сделать позитивный вывод: раз природа с успехом решает эти задачи, то, может быть, и мы могли бы использовать квантовые системы в качестве некоторой новой элементной базы для вычислений. Компьютеры, основанные на квантовых логических элементах, могли бы быть намного более мощными по сравнению со своими классическими собратьями. Интересно, что за два года до Фейнмана, в 1980 г., похожие идеи выдвигал российский математик Юрий Манин в своей небольшой, но очень содержательной книге «Вычислимое и невычислимое». Основным элементом квантового компьютера является квантовый бит (кубит), представляющий собой двухуровневую квантовую систему. В качестве кубитов могут выступать ионы, атомы, электроны, фотоны, спины атомных ядер, структуры из сверхпроводников и многие другие физические системы. Квантовое состояние кубита представляет собой суперпозицию базисных состояний физической системы. Основным ресурсом квантовых вычислений служит явление запутанности, которое не имеет аналога в классической физике. Явление квантовой запутанности приводит к тому, что квантовое состояние многокубитовой системы не сводится к описанию состояний отдельных кубитов, ее составляющих. Каждый отдельный кубит, входящий в состав квантового регистра, теряет свою индивидуальность, становясь частью единого целого. Любое квантовое вычисление может быть выполнено с помощью универсального набора одно- и двухкубитовых элементарных операций. Преимущества этих компьютеров – в распараллеливании, которое присуще процессам в квантовой механике. Согласно законам квантовой механики, получается, что природа одновременно «прощупывает» большое число альтернатив. 01.02.2013 http://www.cybersecurity.ru/it/169157.html