1. greki_hoy

    greki_hoy Member

    Joined:
    4 Mar 2010
    Messages:
    326
    Likes Received:
    57
    Reputations:
    41
    дело было вечером, делать было нечего

    Всем привет

    когда пишеш без CRT (или вообще без импорта) бывает нужна структура для быстрой сортировки и поиска
    (есть в ntdll реализация splay деревьев но я ими не пользовался и не о том сейчас речь)
    ну и вот чтобы не велосипедить в следующий раз я взял реализацию красно черных деревьев (самобалансирующихся) из линукса причесал чтобы она компилировалась на cl ну собственно и все

    плюсы ей не нужен абсолютно никакой импорт
    довольно удобно пользоваться хорошая документация (сорсы линукса grep) и крошечный размер в скомпилированном виде около 1 кб
    так как нет зависимостей довольно тривиально встроить в шеллкод код впринципе базоненависмый получится ну а так как в шеллкоде все равно адреса апи нужны то зависмости не определяющий фактор

    вот тут примеры основных операций из реальной жизни

    если вам нужно все многообразие примеров и полное просветление
    то выполните следующую команду (сygwin)

    Code:
    $ grep -r -h -C 30 'rb_entry' 'C:\linux-3.3.1'
    
    а вот док небольшой
    его желательно обязательно прочитать

    Code:
    http://kernel.org/doc/Documentation/rbtree.txt
    и еще
    http://rflinux.blogspot.de/2011/10/red-black-trees-linux_16.html на русском
    
    Code:
    size_t dso__fprintf_symbols_by_name(struct dso *dso,
                                        enum map_type type, FILE *fp)
    {
            size_t ret = 0;
            struct rb_node *nd;
            struct symbol_name_rb_node *pos;
    
            for (nd = rb_first(&dso->symbol_names[type]); nd; nd = rb_next(nd)) {
                    pos = rb_entry(nd, struct symbol_name_rb_node, rb_node);
                    fprintf(fp, "%s\n", pos->sym.name);
            }
    
            return ret;
    }
    
    static struct symbol *symbols__find_by_name(struct rb_root *symbols,
                                                const char *name)
    {
            struct rb_node *n;
    
            if (symbols == NULL)
                    return NULL;
    
            n = symbols->rb_node;
    
            while (n) {
                    struct symbol_name_rb_node *s;
                    int cmp;
    
                    s = rb_entry(n, struct symbol_name_rb_node, rb_node);
                    cmp = strcmp(name, s->sym.name);
    
                    if (cmp < 0)
                            n = n->rb_left;
                    else if (cmp > 0)
                            n = n->rb_right;
                    else
                            return &s->sym;
            }
    
            return NULL;
    }
    
    static void symbols__delete(struct rb_root *symbols)
    {
            struct symbol *pos;
            struct rb_node *next = rb_first(symbols);
    
            while (next) {
                    pos = rb_entry(next, struct symbol, rb_node);
                    next = rb_next(&pos->rb_node);
                    rb_erase(&pos->rb_node, symbols);
                    symbol__delete(pos);
            }
    }
    
    int strlist__add(struct strlist *self, const char *new_entry)
    {
            struct rb_node **p = &self->entries.rb_node;
            struct rb_node *parent = NULL;
            struct str_node *sn;
    
            while (*p != NULL) {
                    int rc;
    
                    parent = *p;
                    sn = rb_entry(parent, struct str_node, rb_node);
                    rc = strcmp(sn->s, new_entry);
    
                    if (rc > 0)
                            p = &(*p)->rb_left;
                    else if (rc < 0)
                            p = &(*p)->rb_right;
                    else
                            return -EEXIST;
            }
    
            sn = str_node__new(new_entry, self->dupstr);
            if (sn == NULL)
                    return -ENOMEM;
    
            rb_link_node(&sn->rb_node, parent, p);
            rb_insert_color(&sn->rb_node, &self->entries);
            ++self->nr_entries;
    
            return 0;
    }
    

    а это собственно два файла реализации

    сначала хедер

    Code:
    /*
      Red Black Trees
      (C) 1999  Andrea Arcangeli <[email protected]>
      
      This program is free software; you can redistribute it and/or modify
      it under the terms of the GNU General Public License as published by
      the Free Software Foundation; either version 2 of the License, or
      (at your option) any later version.
    
      This program is distributed in the hope that it will be useful,
      but WITHOUT ANY WARRANTY; without even the implied warranty of
      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      GNU General Public License for more details.
    
      You should have received a copy of the GNU General Public License
      along with this program; if not, write to the Free Software
      Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
    
      linux/include/linux/rbtree.h
    
      To use rbtrees you'll have to implement your own insert and search cores.
      This will avoid us to use callbacks and to drop drammatically performances.
      I know it's not the cleaner way,  but in C (not in C++) to get
      performances and genericity...
    
      Some example of insert and search follows here. The search is a plain
      normal search over an ordered tree. The insert instead must be implemented
      in two steps: First, the code must insert the element in order as a red leaf
      in the tree, and then the support library function rb_insert_color() must
      be called. Such function will do the not trivial work to rebalance the
      rbtree, if necessary.
    
    -----------------------------------------------------------------------
    static inline struct page * rb_search_page_cache(struct inode * inode,
    						 unsigned long offset)
    {
    	struct rb_node * n = inode->i_rb_page_cache.rb_node;
    	struct page * page;
    
    	while (n)
    	{
    		page = rb_entry(n, struct page, rb_page_cache);
    
    		if (offset < page->offset)
    			n = n->rb_left;
    		else if (offset > page->offset)
    			n = n->rb_right;
    		else
    			return page;
    	}
    	return NULL;
    }
    
    static inline struct page * __rb_insert_page_cache(struct inode * inode,
    						   unsigned long offset,
    						   struct rb_node * node)
    {
    	struct rb_node ** p = &inode->i_rb_page_cache.rb_node;
    	struct rb_node * parent = NULL;
    	struct page * page;
    
    	while (*p)
    	{
    		parent = *p;
    		page = rb_entry(parent, struct page, rb_page_cache);
    
    		if (offset < page->offset)
    			p = &(*p)->rb_left;
    		else if (offset > page->offset)
    			p = &(*p)->rb_right;
    		else
    			return page;
    	}
    
    	rb_link_node(node, parent, p);
    
    	return NULL;
    }
    
    static inline struct page * rb_insert_page_cache(struct inode * inode,
    						 unsigned long offset,
    						 struct rb_node * node)
    {
    	struct page * ret;
    	if ((ret = __rb_insert_page_cache(inode, offset, node)))
    		goto out;
    	rb_insert_color(node, &inode->i_rb_page_cache);
     out:
    	return ret;
    }
    -----------------------------------------------------------------------
    */
    
    #ifndef	_LINUX_RBTREE_H
    #define	_LINUX_RBTREE_H
    
    #include <stddef.h>
    
    #ifdef __cplusplus
    extern "C" {
    #endif
    
    #ifdef _WIN64
    __declspec(align(8))
    #else
    __declspec(align(4))
    #endif
    
    typedef struct rb_node
    {
    	uintptr_t rb_parent_color;
    #define	RB_RED		0
    #define	RB_BLACK	1
    	struct rb_node *rb_right;
    	struct rb_node *rb_left;
    } rb_node;
    
    typedef struct rb_root
    {
    	struct rb_node *rb_node;
    } rb_root;
    
    
    #define rb_parent(r)   ((struct rb_node *)((r)->rb_parent_color & ~3))
    #define rb_color(r)   ((r)->rb_parent_color & 1)
    #define rb_is_red(r)   (!rb_color(r))
    #define rb_is_black(r) rb_color(r)
    #define rb_set_red(r)  ((r)->rb_parent_color &= ~1)
    #define rb_set_black(r)  ((r)->rb_parent_color |= 1)
    
    static __inline void rb_set_parent(struct rb_node *rb, struct rb_node *p)
    {
    	rb->rb_parent_color = (rb->rb_parent_color & 3) | (uintptr_t)p;
    }
    static __inline void rb_set_color(struct rb_node *rb, int color)
    {
    	rb->rb_parent_color = (rb->rb_parent_color & ~1) | color;
    }
    
    #define RB_ROOT	{ NULL }
    #define	rb_entry(address, type, field) ((type *)( \
    	(char*)(address) - offsetof(type, field))) 
    
    
    #define RB_EMPTY_ROOT(root)	((root)->rb_node == NULL)
    #define RB_EMPTY_NODE(node)	(rb_parent(node) == node)
    #define RB_CLEAR_NODE(node)	(rb_set_parent(node, node))
    
    static __inline void rb_init_node(struct rb_node *rb)
    {
    	rb->rb_parent_color = 0;
    	rb->rb_right = NULL;
    	rb->rb_left = NULL;
    	RB_CLEAR_NODE(rb);
    }
    
    extern void rb_insert_color(struct rb_node *, struct rb_root *);
    extern void rb_erase(struct rb_node *, struct rb_root *);
    
    typedef void (*rb_augment_f)(struct rb_node *node, void *data);
    
    extern void rb_augment_insert(struct rb_node *node,
    			      rb_augment_f func, void *data);
    extern struct rb_node *rb_augment_erase_begin(struct rb_node *node);
    extern void rb_augment_erase_end(struct rb_node *node,
    				 rb_augment_f func, void *data);
    
    /* Find logical next and previous nodes in a tree */
    extern struct rb_node *rb_next(const struct rb_node *);
    extern struct rb_node *rb_prev(const struct rb_node *);
    extern struct rb_node *rb_first(const struct rb_root *);
    extern struct rb_node *rb_last(const struct rb_root *);
    
    /* Fast replacement of a single node without remove/rebalance/add/rebalance */
    extern void rb_replace_node(struct rb_node *victim, struct rb_node *new_, 
    			    struct rb_root *root);
    
    static __inline void rb_link_node(struct rb_node * node, struct rb_node * parent,
    				struct rb_node ** rb_link)
    {
    	node->rb_parent_color = (uintptr_t)parent;
    	node->rb_left = node->rb_right = NULL;
    
    	*rb_link = node;
    }
    
    #ifdef __cplusplus
    }
    #endif
    
    #endif	/* _LINUX_RBTREE_H */
    
    а теперь .c

    Code:
    /*
      Red Black Trees
      (C) 1999  Andrea Arcangeli <[email protected]>
      (C) 2002  David Woodhouse <[email protected]>
      
      This program is free software; you can redistribute it and/or modify
      it under the terms of the GNU General Public License as published by
      the Free Software Foundation; either version 2 of the License, or
      (at your option) any later version.
    
      This program is distributed in the hope that it will be useful,
      but WITHOUT ANY WARRANTY; without even the implied warranty of
      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      GNU General Public License for more details.
    
      You should have received a copy of the GNU General Public License
      along with this program; if not, write to the Free Software
      Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
    
      linux/lib/rbtree.c
    */
    
    #include "rbtree.h"
    
    // assignment within conditional expression
    #pragma warning(disable: 706) 
    
    static void __rb_rotate_left(struct rb_node *node, struct rb_root *root)
    {
    	struct rb_node *right = node->rb_right;
    	struct rb_node *parent = rb_parent(node);
    
    	if ((node->rb_right = right->rb_left))
    		rb_set_parent(right->rb_left, node);
    	right->rb_left = node;
    
    	rb_set_parent(right, parent);
    
    	if (parent)
    	{
    		if (node == parent->rb_left)
    			parent->rb_left = right;
    		else
    			parent->rb_right = right;
    	}
    	else
    		root->rb_node = right;
    	rb_set_parent(node, right);
    }
    
    static void __rb_rotate_right(struct rb_node *node, struct rb_root *root)
    {
    	struct rb_node *left = node->rb_left;
    	struct rb_node *parent = rb_parent(node);
    
    	if ((node->rb_left = left->rb_right))
    		rb_set_parent(left->rb_right, node);
    	left->rb_right = node;
    
    	rb_set_parent(left, parent);
    
    	if (parent)
    	{
    		if (node == parent->rb_right)
    			parent->rb_right = left;
    		else
    			parent->rb_left = left;
    	}
    	else
    		root->rb_node = left;
    	rb_set_parent(node, left);
    }
    
    void rb_insert_color(struct rb_node *node, struct rb_root *root)
    {
    	struct rb_node *parent, *gparent;
    
    	while ((parent = rb_parent(node)) && rb_is_red(parent))
    	{
    		gparent = rb_parent(parent);
    
    		if (parent == gparent->rb_left)
    		{
    			{
    				register struct rb_node *uncle = gparent->rb_right;
    				if (uncle && rb_is_red(uncle))
    				{
    					rb_set_black(uncle);
    					rb_set_black(parent);
    					rb_set_red(gparent);
    					node = gparent;
    					continue;
    				}
    			}
    
    			if (parent->rb_right == node)
    			{
    				register struct rb_node *tmp;
    				__rb_rotate_left(parent, root);
    				tmp = parent;
    				parent = node;
    				node = tmp;
    			}
    
    			rb_set_black(parent);
    			rb_set_red(gparent);
    			__rb_rotate_right(gparent, root);
    		} else {
    			{
    				register struct rb_node *uncle = gparent->rb_left;
    				if (uncle && rb_is_red(uncle))
    				{
    					rb_set_black(uncle);
    					rb_set_black(parent);
    					rb_set_red(gparent);
    					node = gparent;
    					continue;
    				}
    			}
    
    			if (parent->rb_left == node)
    			{
    				register struct rb_node *tmp;
    				__rb_rotate_right(parent, root);
    				tmp = parent;
    				parent = node;
    				node = tmp;
    			}
    
    			rb_set_black(parent);
    			rb_set_red(gparent);
    			__rb_rotate_left(gparent, root);
    		}
    	}
    
    	rb_set_black(root->rb_node);
    }
    
    static void __rb_erase_color(struct rb_node *node, struct rb_node *parent,
    			     struct rb_root *root)
    {
    	struct rb_node *other;
    
    	while ((!node || rb_is_black(node)) && node != root->rb_node)
    	{
    		if (parent->rb_left == node)
    		{
    			other = parent->rb_right;
    			if (rb_is_red(other))
    			{
    				rb_set_black(other);
    				rb_set_red(parent);
    				__rb_rotate_left(parent, root);
    				other = parent->rb_right;
    			}
    			if ((!other->rb_left || rb_is_black(other->rb_left)) &&
    			    (!other->rb_right || rb_is_black(other->rb_right)))
    			{
    				rb_set_red(other);
    				node = parent;
    				parent = rb_parent(node);
    			}
    			else
    			{
    				if (!other->rb_right || rb_is_black(other->rb_right))
    				{
    					rb_set_black(other->rb_left);
    					rb_set_red(other);
    					__rb_rotate_right(other, root);
    					other = parent->rb_right;
    				}
    				rb_set_color(other, rb_color(parent));
    				rb_set_black(parent);
    				rb_set_black(other->rb_right);
    				__rb_rotate_left(parent, root);
    				node = root->rb_node;
    				break;
    			}
    		}
    		else
    		{
    			other = parent->rb_left;
    			if (rb_is_red(other))
    			{
    				rb_set_black(other);
    				rb_set_red(parent);
    				__rb_rotate_right(parent, root);
    				other = parent->rb_left;
    			}
    			if ((!other->rb_left || rb_is_black(other->rb_left)) &&
    			    (!other->rb_right || rb_is_black(other->rb_right)))
    			{
    				rb_set_red(other);
    				node = parent;
    				parent = rb_parent(node);
    			}
    			else
    			{
    				if (!other->rb_left || rb_is_black(other->rb_left))
    				{
    					rb_set_black(other->rb_right);
    					rb_set_red(other);
    					__rb_rotate_left(other, root);
    					other = parent->rb_left;
    				}
    				rb_set_color(other, rb_color(parent));
    				rb_set_black(parent);
    				rb_set_black(other->rb_left);
    				__rb_rotate_right(parent, root);
    				node = root->rb_node;
    				break;
    			}
    		}
    	}
    	if (node)
    		rb_set_black(node);
    }
    
    void rb_erase(struct rb_node *node, struct rb_root *root)
    {
    	struct rb_node *child, *parent;
    	int color;
    
    	if (!node->rb_left)
    		child = node->rb_right;
    	else if (!node->rb_right)
    		child = node->rb_left;
    	else
    	{
    		struct rb_node *old = node, *left;
    
    		node = node->rb_right;
    		while ((left = node->rb_left) != NULL)
    			node = left;
    
    		if (rb_parent(old)) {
    			if (rb_parent(old)->rb_left == old)
    				rb_parent(old)->rb_left = node;
    			else
    				rb_parent(old)->rb_right = node;
    		} else
    			root->rb_node = node;
    
    		child = node->rb_right;
    		parent = rb_parent(node);
    		color = rb_color(node);
    
    		if (parent == old) {
    			parent = node;
    		} else {
    			if (child)
    				rb_set_parent(child, parent);
    			parent->rb_left = child;
    
    			node->rb_right = old->rb_right;
    			rb_set_parent(old->rb_right, node);
    		}
    
    		node->rb_parent_color = old->rb_parent_color;
    		node->rb_left = old->rb_left;
    		rb_set_parent(old->rb_left, node);
    
    		goto color;
    	}
    
    	parent = rb_parent(node);
    	color = rb_color(node);
    
    	if (child)
    		rb_set_parent(child, parent);
    	if (parent)
    	{
    		if (parent->rb_left == node)
    			parent->rb_left = child;
    		else
    			parent->rb_right = child;
    	}
    	else
    		root->rb_node = child;
    
     color:
    	if (color == RB_BLACK)
    		__rb_erase_color(child, parent, root);
    }
    
    static void rb_augment_path(struct rb_node *node, rb_augment_f func, void *data)
    {
    	struct rb_node *parent;
    
    up:
    	func(node, data);
    	parent = rb_parent(node);
    	if (!parent)
    		return;
    
    	if (node == parent->rb_left && parent->rb_right)
    		func(parent->rb_right, data);
    	else if (parent->rb_left)
    		func(parent->rb_left, data);
    
    	node = parent;
    	goto up;
    }
    
    /*
     * after inserting @node into the tree, update the tree to account for
     * both the new entry and any damage done by rebalance
     */
    void rb_augment_insert(struct rb_node *node, rb_augment_f func, void *data)
    {
    	if (node->rb_left)
    		node = node->rb_left;
    	else if (node->rb_right)
    		node = node->rb_right;
    
    	rb_augment_path(node, func, data);
    }
    
    /*
     * before removing the node, find the deepest node on the rebalance path
     * that will still be there after @node gets removed
     */
    struct rb_node *rb_augment_erase_begin(struct rb_node *node)
    {
    	struct rb_node *deepest;
    
    	if (!node->rb_right && !node->rb_left)
    		deepest = rb_parent(node);
    	else if (!node->rb_right)
    		deepest = node->rb_left;
    	else if (!node->rb_left)
    		deepest = node->rb_right;
    	else {
    		deepest = rb_next(node);
    		if (deepest->rb_right)
    			deepest = deepest->rb_right;
    		else if (rb_parent(deepest) != node)
    			deepest = rb_parent(deepest);
    	}
    
    	return deepest;
    }
    
    /*
     * after removal, update the tree to account for the removed entry
     * and any rebalance damage.
     */
    void rb_augment_erase_end(struct rb_node *node, rb_augment_f func, void *data)
    {
    	if (node)
    		rb_augment_path(node, func, data);
    }
    
    /*
     * This function returns the first node (in sort order) of the tree.
     */
    struct rb_node *rb_first(const struct rb_root *root)
    {
    	struct rb_node	*n;
    
    	n = root->rb_node;
    	if (!n)
    		return NULL;
    	while (n->rb_left)
    		n = n->rb_left;
    	return n;
    }
    
    struct rb_node *rb_last(const struct rb_root *root)
    {
    	struct rb_node	*n;
    
    	n = root->rb_node;
    	if (!n)
    		return NULL;
    	while (n->rb_right)
    		n = n->rb_right;
    	return n;
    }
    
    struct rb_node *rb_next(const struct rb_node *node)
    {
    	struct rb_node *parent;
    
    	if (rb_parent(node) == node)
    		return NULL;
    
    	/* If we have a right-hand child, go down and then left as far
    	   as we can. */
    	if (node->rb_right) {
    		node = node->rb_right; 
    		while (node->rb_left)
    			node=node->rb_left;
    		return (struct rb_node *)node;
    	}
    
    	/* No right-hand children.  Everything down and left is
    	   smaller than us, so any 'next' node must be in the general
    	   direction of our parent. Go up the tree; any time the
    	   ancestor is a right-hand child of its parent, keep going
    	   up. First time it's a left-hand child of its parent, said
    	   parent is our 'next' node. */
    	while ((parent = rb_parent(node)) && node == parent->rb_right)
    		node = parent;
    
    	return parent;
    }
    
    struct rb_node *rb_prev(const struct rb_node *node)
    {
    	struct rb_node *parent;
    
    	if (rb_parent(node) == node)
    		return NULL;
    
    	/* If we have a left-hand child, go down and then right as far
    	   as we can. */
    	if (node->rb_left) {
    		node = node->rb_left; 
    		while (node->rb_right)
    			node=node->rb_right;
    		return (struct rb_node *)node;
    	}
    
    	/* No left-hand children. Go up till we find an ancestor which
    	   is a right-hand child of its parent */
    	while ((parent = rb_parent(node)) && node == parent->rb_left)
    		node = parent;
    
    	return parent;
    }
    
    void rb_replace_node(struct rb_node *victim, struct rb_node *new_,
    		     struct rb_root *root)
    {
    	struct rb_node *parent = rb_parent(victim);
    
    	/* Set the surrounding nodes to point to the replacement */
    	if (parent) {
    		if (victim == parent->rb_left)
    			parent->rb_left = new_;
    		else
    			parent->rb_right = new_;
    	} else {
    		root->rb_node = new_;
    	}
    	if (victim->rb_left)
    		rb_set_parent(victim->rb_left, new_);
    	if (victim->rb_right)
    		rb_set_parent(victim->rb_right, new_);
    
    	/* Copy the pointers/colour from the victim to the replacement */
    	*new_ = *victim;
    }
    
     
    #1 greki_hoy, 27 Apr 2012
    Last edited: 28 Apr 2012
    1 person likes this.